Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation.

نویسندگان

  • Michael Roth
  • Britta Will
  • Guillermo Simkin
  • Swathi Narayanagari
  • Laura Barreyro
  • Boris Bartholdy
  • Roni Tamari
  • Constantine S Mitsiades
  • Amit Verma
  • Ulrich Steidl
چکیده

Eltrombopag (EP) is a small-molecule, nonpeptide thrombopoietin receptor (TPO-R) agonist that has been approved recently for the treatment of thrombocytopenia in patients with chronic immune thrombocytopenic purpura. Prior studies have shown that EP stimulates megakaryopoiesis in BM cells from patients with acute myeloid leukemia and myelodysplastic syndrome, and the results also suggested that it may inhibit leukemia cell growth. In the present study, we studied the effects of EP on leukemia cell proliferation and the mechanism of its antiproliferative effects. We found that EP leads to a decreased cell division rate, a block in G(1) phase of cell cycle, and increased differentiation in human and murine leukemia cells. Because EP is species specific in that it can only bind TPO-R in human and primate cells, these findings further suggested that the antileukemic effect is independent of TPO-R. We found that treatment with EP leads to a reduction in free intracellular iron in leukemic cells in a dose-dependent manner. Experimental increase of intracellular iron abrogated the antiproliferative and differentiation-inducing effects of EP, demonstrating that its antileukemic effects are mediated through modulation of intracellular iron content. Finally, determination of EP's antileukemic activity in vivo demonstrated its ability to prolong survival in 2 mouse models of leukemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MYELOID NEOPLASIA Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation

1Division of Pediatric Hematology/Oncology, Children’s Hospital at Montefiore, Bronx, NY; 2Department of Cell Biology, Albert Einstein College of Medicine and Albert Einstein Cancer Center, Bronx, NY; 3Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY; 4Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; 5Department of Medicine, Harvard Medi...

متن کامل

Biochemical and morphological changes in bone marrow mesenchymal stem cells induced by treatment of rats with p-Nonylphenol

Objective(s):In previous investigations, we have shown para-nonylphenol (p-NP) caused significant reduction of proliferation and differentiation of rat bone marrow mesenchymal stem cells (MSCs) in vitro. In this study, we first treat the rats with p-NP, then carried out the biochemical and morphological studies on MSCs. Materials and Methods: Proliferation property of cells was evaluated with t...

متن کامل

Gallic Acid Inhibits Proliferation and Induces Apoptosis in Lymphoblastic Leukemia Cell Line (C121)

AbstractLeukemia is known as the world’s fifth most prevalent cancer. New cytotoxic drugs have created considerable progress in the treatment, but side effects are still the important cause of mortality. Plant derivatives have been recently considered as important sources for the treatment of various diseases, including cancer. Gallic acid (GA) is a polyhydroxyphenolic compound with a wide rang...

متن کامل

The Effect of Iron on Malignant Lymphoblastic Cells Survival and Its Mechanism

Background and Objectives:Anemia is a common complication of chemotherapy. In order to resolve this problem, multiple red blood cell transfusions are administered, leading to iron overload. Given the confirmation of positive correlation between the increased bone marrow iron stores and adverse response to the treatment in the previous study, the effect of iron on the proliferation of acute lymp...

متن کامل

Genistein Induces Apoptosis and Inhibits Proliferation of HT29 Colon Cancer Cells

Soybean isoflavone genistein has multiple anticancer properties and its pro-apoptotic and anti-proliferative effects have been studied in different cancer cells. However, the mechanisms of action of genistein and its molecular targets on human colon cells have not been fully elucidated. Therefore, caspase-3 and p38 mitogen-activated protein kinase (p38 MAPK) as the main therapeutic targets...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 120 2  شماره 

صفحات  -

تاریخ انتشار 2012